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Abstract
Quantization of the nonlinear supersymmetry faces a problem of a quantum
anomaly. For some classes of superpotentials, the integrals of motion admit
corrections guaranteeing the preservation of the nonlinear supersymmetry at
the quantum level. With an example of a system realizing the nonlinear
superconformal symmetry, we discuss the nature of such corrections and
speculate on their possible general origin.

PACS numbers: 11.30.Pb, 03.65.Sq

1. Introduction

Nonlinear symmetry is characterized by the polynomial commutation relations of the integrals
of motion [1]. Nonlinear generalization of the usual supersymmetry [2] was obtained originally
by employing the higher derivative supercharges [3]. The higher derivative realization of the
nonlinear supersymmetry has been studied in various aspects, see [3–9].

Another generalization of supersymmetric quantum mechanics is a construction of the
minimally bosonized supersymmetry [10], in which a reflection operator is employed for the
role of the grading operator. The development of the construction in application to the study of
hidden symmetries of the purely parabosonic systems resulted in the observation of nonlinear
supersymmetry independent of the original line of research [11].

A new wave of interest in nonlinear supersymmetry [12–20] was triggered by the
observation of its close relation to the quasi-exactly solvable systems [21]. The relationship
was revealed, in particular, under the study of the quantum anomaly problem [12] arising in
the quantization of classical systems possessing nonlinear supersymmetry [11].

In the present paper, we discuss the solution of the quantum anomaly problem associated
with the nonlinear supersymmetry, emphasizing the analysis of the nature of the corresponding
quantum corrections.
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The layout of the paper is as follows. In section 2, the origin of the quantum anomaly
problem and its solution resulting in the holomorphic form of the nonlinear supersymmetry
are discussed together with a universal algebraic structure underlying the latter. In section 3
we consider a particular case of the second-order supersymmetry given by the Calogero-like
quantum Hamiltonian. Section 4 is devoted to the discussion of the nonlinear generalization
of the superconformal symmetry and its interpretation from the point of view of the special
reduction procedure applied to the associated free particle system. In section 5 we specify
some problems to be interesting for further consideration.

2. Quantum anomaly and nonlinear holomorphic supersymmetry

Let us consider a system described by the Lagrangian

L = 1
2 (ẋ2 − W 2(x)) − gW ′(x)θ+θ− + iθ+θ̇− (2.1)

with Grassmann variables θ±, (θ+)∗ = θ−, a superpotential W(x) and a ‘boson–fermion
coupling constant’ g. At |g| = 1 the pseudo-classical system (2.1) underlies Witten
supersymmetric quantum mechanics with associated Lie superalgebra of the integrals of
motion, while at |g| = n, n = 2, 3, . . . , it possesses the nonlinear supersymmetry [11, 12].
This can easily be seen in the canonical approach where the Hamiltonian

H = 1
2 (p2 + W 2(x)) + nW ′(x)θ+θ− n ∈ Z (2.2)

and the Poisson–Dirac brackets {x, p} = 1, {θ+, θ−} = −i correspond to Lagrangian (2.1)
with g = n. Due to the invariance of the Lagrangian under g → −g,W(x) → −W(x),
we shall imply n ∈ Z+ in what follows. The system (2.2) possesses the two odd integrals of
motion

Q+ = znθ+ Q− = (Q+)∗ = z̄nθ− (2.3)

in addition to the Hamiltonian which in terms of the complex variable

z = W(x) + ip (2.4)

is represented in the form

H = 1
2 (zz̄ + in{z, z̄}θ+θ−). (2.5)

For integer values of the coupling constant, g = n, the projections on the unit of the Grassmann
algebra of the instant frequencies of the oscillator-like bosonic, z (z̄), and fermionic, θ+ (θ−),
variables are commensurable (being equal to −W ′(x) and nW ′(x) for z and θ+, respectively),
which guarantees the existence of the local in time odd integrals of motion (2.3) [11, 12].

The integrals satisfy the relations

{Q+,Q−} = −iHn {Q+,Q+} = {Q−,Q−} = 0 {Q±,H } = 0. (2.6)

The case n = 0 is characterized by the trivial odd integrals of motion, Q± = θ±. The
case n = 1 corresponds to the linear supersymmetry, for which the supercharges and the
Hamiltonian form a classical Lie superalgebra corresponding to Witten supersymmetric
quantum mechanics. For n = 2, 3, . . . the system possesses the nonlinear supersymmetry
characterized by the nonlinear (polynomial of the order n) Poisson superalgebra of the integrals
of motion.

The essential difference of the nonlinear supersymmetry from the linear one appears
as soon as we try to quantize the system. Taking the direct quantum analogues for the
supercharges,

Q̂+ = (Q̂−)† = ẑnθ̂+ with ẑ = W(x) + h̄
d

dx
θ̂+ =

√
h̄σ+ (2.7)
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where σ+ = 1
2 (σ1 + iσ2), and for the Hamiltonian,

Ĥ = 1

2

(
−h̄2 d2

dx2
+ W 2(x) + nh̄W ′(x)σ3

)
(2.8)

one finds that at n = 1 the quantum supercharges (2.7) are the integrals of motion,
[Q̂±, Ĥ ] = 0, for any choice of the superpotential W(x), and the superalgebra they form
together with the Hamiltonian is a direct quantum analogue of (2.6) with n = 1. However,
for n � 2, the odd operators (2.7) commute with the Hamiltonian (2.8) only for the quadratic
superpotential

W(x) = w2x
2 + w1x + w0. (2.9)

In this case the classical nonlinear superalgebra (2.6) changes its form for [Q̂+, Q̂−]+ =
Ĥ n + Pn−1(Ĥ ), where Pn−1(Ĥ ) is a polynomial of the order n − 1 with the coefficients given
in terms of w2

1 − 4w0w2 and w2
2, and disappearing for h̄ → 0 [12]. For the superpotential of

a generic form, [Q̂±, Ĥ ] �= 0, and we face the problem of the quantum anomaly.
In order to resolve this problem, one could look for the class of the quantum analogues

of the classical supercharges (2.3) whose conservation would be consistent with the quantum
Hamiltonian of the fixed form (2.8). Then, one of the possibilities is to suppose that the
supercharge Q̂+ has a holomorphic form depending only on ẑ (and not depending on ˆ̄z), being
a polynomial of the order n in it. The condition of conservation for such a supercharge is
reduced to the equation

n(n2 − 1)h̄
d

dx
(h̄2W ′′ − ω2W) = 0 (2.10)

where ω2 is a constant. For ω �= 0, the general solution to equation (2.10) gives a three-
parametric class of solutions

W(x) = w+ eωx + w− e−ωx + w0 (2.11)

while for ω = 0 the solution is (2.9). Different choices for the parameters w,w± and w0 give
rise then to a broad class of quasi-exactly solvable and exactly solvable quantum mechanical
systems [12].

For a quasi-exactly solvable Hamiltonian only a finite number of the eigenstates and
eigenvalues can be found in a purely algebraic manner [21]. A finite-dimensional subspace
spanned by such eigenstates provides a finite-dimensional representation of the sl(2, R)

algebra, and the dimension of the representation is determined by a natural parameter appearing
explicitly in the Hamiltonian. In the case of the nonlinear supersymmetry of the order n, the
zero mode subspaces of supercharges can be associated with the n-dimensional representations
of the sl(2, R) [12]. In particular, the systems with nonlinear supersymmetry corresponding
to the quadratic superpotential (2.9) can be related [16] to the quasi-exactly solvable systems
with quartic potential appearing in the context of the PT-symmetric quantum mechanics
[22].

The described class of systems with nonlinear supersymmetry given by the holomorphic
supercharges corresponding to the superpotentials (2.11) and (2.9) admits the following
generalization. First, we note that [ẑ, ˆ̄z] = 2h̄W ′(x) and [ẑ, ˆ̄z]+ = 2

(
W 2(x) − h̄2 d2

dx2

)
.

Then, generalizing the operators ẑ and ˆ̄z defined by equation (2.7) for the pair of mutually
conjugate operators of arbitrary nature, Z and Z̄ = Z†, we can change the Hamiltonian and
equation (2.10) for

Hn = 1
4 ([Z, Z̄]+ + n[Z, Z̄]σ3) (2.12)

[Z, [Z, [Z, Z̄]]] = ω2[Z, Z̄] [Z̄, [Z̄, [Z, Z̄]]] = ω̄2[Z, Z̄] (2.13)
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where ω̄ = ω∗. Relations (2.12) guarantee the existence of the two integrals of motion for the
system (2.12),

Q+
n =

n−1∏
k=0

(
Z +

(
k − n − 1

2

)
ω

)
· σ+ Q−

n = (Q+)† (2.14)

whose structure is corrected in comparison with the classical case by a trivial shift of bosonic
factors.

Nonlinear algebraic relations similar to relations (2.13) also appeared in the context of
spin integrable systems under the name of Dolan–Grady relations [23]. Let us stress that
here the Dolan–Grady relations arise as necessary conditions for anomaly-free quantization
of pseudo-classical systems with nonlinear holomorphic supersymmetry.

Through these relations, the Onsager algebra can be generated [16]. The case ω = 0
corresponds to a more simple form of the contracted Onsager algebra generated recursively
by Z0 ≡ Z and Z̄0 ≡ Z̄ via the contracted (ω = 0) Dolan–Grady relations:

[Zm, Z̄n] = Bm+n+1 [Zn,Bm] = Zm+n [Bm, Z̄n] = Z̄m+n
(2.15)

[Zm,Zn] = 0 [Z̄m, Z̄n] = 0 [Bm,Bn] = 0

where m, n ∈ Z+ and B0 = 0 is implied. In the general case of ω �= 0, the Onsager algebra
has a similar but more complicated form, see [16]. In both cases of ω = 0 and ω �= 0, the
Onsager algebra admits an infinite set of mutually commuting quadratic operators,

J l
λ = 1

2

l∑
p=1

([Z̄p−1, Zl−p]+ − BlBl−p) − λ

2
Bl

where l = 1, 2, . . . , and λ is a parameter. Putting λ = n ∈ N and introducing the operators
J l

n = J l
nσ−σ+ + J l

−nσ+σ−, σ− = σ
†
+, one finds that the Hamiltonian (2.12) belongs to the

infinite set of mutually commuting even operators J l
n, l = 1, 2, . . . ,J 1

n = Hn, to be quadratic
in the generators of the Onsager algebra, and that the nonlinear superalgebra takes the form[

Q+
n,Q−

n

]
+ = Hn

n + Pn−1
(
J l

n

) [
Q±,J l

n

] = [
J l

n,J k
n

] = 0 (2.16)

where Pn−1
(
J l

n

)
is a polynomial of the order n − 1 [16]. For systems with a finite number of

degrees of freedom, there is only a finite number of independent integrals J l
n .

3. Second-order supersymmetric quantum mechanics

Though a universal algebraic structure associated with Dolan–Grady relations allows one to
realize nonlinear holomorphic supersymmetry in nontrivial (Riemann) and noncommutative
geometries [17] as well as to generalize the construction for the case of nonlinear pseudo-
supersymmetry [16] related to the PT-symmetric quantum mechanics [24], it generates a rather
special class of systems possessing nonlinear supersymmetry. But since there is no one-to-
one correspondence between the classical canonical and the quantum unitary transformations,
one can look for other forms of nonlinear supersymmetry proceeding from the classical
representations different from the holomorphic one. For instance, one could look for the
classical formulation characterized by the supercharges being polynomials of the nth degree
in the momentum p. The problem of finding such a formulation can be solved completely in
the simplest case n = 2 [12]. For it, the Hamiltonian and the supercharges are fixed as

H = 1

2

(
p2 + W 2(x) − ν

W 2(x)

)
+ 2W ′(x)θ+θ− ν ∈ R (3.1)
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Q± = 1

2

(
(±ip + W(x))2 +

ν

W 2(x)

)
θ±. (3.2)

The system (3.1), (3.2) is characterized by the order n = 2 superalgebra {Q+,Q−} =
−i(H 2 + ν). Note that for W(x) = x, the part of (3.1) without the last nilpotent term
takes the form of the Hamiltonian for the two-body Calogero problem. The peculiarity of
the Calogero-like n = 2 supersymmetric system (3.1), (3.2) in comparison with the nonlinear
holomorphic supersymmetry is that it admits the quantum anomaly-free formulation for the
superpotential W(x) of an arbitrary form. The anomaly-free quantum version of the n = 2
supersymmetric system (3.1), (3.2) is given by the operators

Ĥ = 1

2

(
−h̄2 d2

dx2
+ W 2 − ν

W 2
+ 2h̄W ′σ3 + �(W)

)
(3.3)

Q̂+ = (Q̂−)† = 1

2

((
h̄

d

dx
+ W

)2

+
ν

W 2
− �(W)

)
θ̂+ (3.4)

with the quantum correction

�(W) = h̄2

4W 2
(2W ′′W − W ′2) = h̄2 1√

W
(
√

W)′′. (3.5)

Note that here the quadratic and exponential forms of the superpotential also play a special
role: for W(x) = (w1x + w0)

2,�(W) = 0, while for W(x) = (w+ eωx + w− e−ωx)2,
�(W) = h̄2ω2 = const.

The inclusion of the quantum correction in the Hamiltonian and supercharges is crucial
for the preservation of the nonlinear supersymmetry: without it the supercharges would not be
the quantum integrals of motion. The quantum integrals (3.3) and (3.4) satisfy the relation to
be the direct quantum analogue of the corresponding classical relation: [Q̂+, Q̂−]+ = Ĥ 2 + ν.

The quantum systems (3.3), (3.4) were the first ones discussed in the context of the
nonlinear (n = 2) supersymmetry [3]. But it is interesting to note that a Hamiltonian structure
similar to (3.3) was discussed earlier in the context of partial symmetry breaking in N = 4
supersymmetric quantum mechanics [25], and that the quantum term (3.5) appeared also in the
method of constructing new solvable potentials via the operator transformations, see [2] and
references therein. The order n = 2 nonlinear supersymmetry given by equations (3.3),
(3.4) with no restrictions on the form of the superpotential admits a generalization for
n > 2 for a class of superpotentials of a special form related to some quasi-exactly solvable
systems [14].

4. Nonlinear superconformal symmetry and reduction

The natural question arising here is whether the origin of the quantum corrections appearing
under construction of nonlinear supersymmetry can be explained to some extent. To clarify
this point, we consider a class of the systems [26, 27] possessing nonlinear supersymmetry
and related to the superconformal mechanics model [28]. As we shall see, in the simplest case
n = 2, the corresponding quantum system is a particular case of the n = 2 supersymmetric
systems (3.3), (3.4), and the corresponding quantum corrections necessary for conservation of
the nonlinear supersymmetry appear for it in a natural way via a special reduction procedure
applied to the associated free particle spinning system.
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So, let us consider a classical system given by the Hamiltonian (2.2) with the superpotential
W(x) = αx−1:

H = 1
2 (p2 + α(α − nθ+θ−)x−2). (4.1)

At n = 1, equation (4.1) is the Hamiltonian of the superconformal mechanics model [28],
which possesses a broader superconformal symmetry generated by the Hamiltonian and the
three even integrals,

D = 1
2xp − tH K = 1

2x2 − 2tD − t2H � = θ+θ− (4.2)

as well as by the four odd integrals of motion

Qa = pθa + αx−1εabθb Sa = pθa − tQa

where a, b = 1, 2 and θ± = 1√
2
(θ1 ± iθ2). All these integrals satisfy the conservation

equation of the form d
dt

I = ∂
∂t

I + {I,H } = 0. In the case of n = 2, 3, . . . , the set of even
integrals of motion is the same as in the superconformal mechanics model (n = 1) with the
correspondingly changed boson–fermion coupling constant in the Hamiltonian, but instead of
the four odd integrals of motion, there are 2(n + 1) supercharges,

S+
n,l = (x + itz)lzn−lθ+ S−

n,l = (
S+

n,l

)∗
l = 0, 1, . . . , n (4.3)

where the even complex variable z is defined by equation (2.4) with W(x) = αx−1. These
integrals form the following nonlinear superconformal algebra osp(2|2)n [26, 27]:

{D,H } = H {D,K} = −K {K,H } = 2D (4.4)

{D, S±} =
(n

2
− l

)
S±

n,l

{
�, S±

n,l

} = ∓iS±
n,l (4.5)

{
H, S±

n,l

} = ±ilS±
n,l−1

{
K, S±

n,l

} = ±i(n − l)S±
n,l+1 (4.6){

S+
n,m, S−

n,l

} = −i(2H)n−m−1(2K)l−1αm−l
D [4HK − i�(n(m − l)αD + 4αl(n − m))] (4.7)

where in the last relation αD ≡ α−2iD and m � l, and the brackets between the odd integrals
for m < l are obtained from it by the complex conjugation. The nonlinear superconformal
algebra osp(2|2)n contains the bosonic Lie subalgebra so(1, 2) ⊕ u(1) generated by the even
integrals, while the set of odd supercharges constitutes the two spin- n

2 representations of the
bosonic subalgebra. At n = 1 the nonlinear superconformal algebra is reduced to the Lie
superalgebra osp(2|2).

The nonlinear superconformal symmetry admits the anomaly-free quantization. The
corresponding quantum corrections to the integrals of motion can be found directly giving the
following quantum analogues of the osp(2|2)n generators:

Ĥ = 1

2

(
−h̄2 d2

dx2
+ (an + bnh̄σ3)

1

x2

)
(4.8)
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D̂ = − i

2
h̄

(
x

d

dx
+

1

2

)
− Ĥ t K̂ = 1

2
x2 − 2D̂t − Ĥ t2 �̂ = h̄

2
σ3 (4.9)

Ŝ+
n,l = (x + itDα−n+1)(x + itDα−n+2) · · · (x + itDα−n+l)Dα−n+l+1 · · ·Dασ+ Ŝ−

n,l = (
Ŝ+

n,l

)†
(4.10)

where

an = α2
n +

h̄2

4
(n2 − 1) bn = −nαn αn = α − h̄

2
(n − 1)

(4.11)

Dα−k =
(
h̄

d

dx
+

α

x

)
− h̄

k

x
.

The second terms in an, αn and Dα−k are the quantum corrections which guarantee the
conservation of the quantum analogues of the integrals of motion (4.1), (4.2) and (4.3). We note
that since the not depending explicitly on time supercharges S+

n,0 = znθ+ and S−
n,0 = (

S+
n,0

)∗

have the holomorphic form and the Hamiltonian (4.1) can be represented in the form (2.5),
classically the system (4.1) is the system with the nonlinear holomorphic supersymmetry
of order n. Furthermore, the quantum shift of the parameters in the bosonic factors of the
odd integrals (4.10) is similar to the shift in the factors of the holomorphic supercharges
(2.14). However, the corresponding superpotential W = αx−1 does not satisfy the equation
(2.10), and the form of the quantum analogues of the Hamiltonian and supercharges S±

n,0
does not correspond to that of the nonlinear holomorphic supersymmetry. Note also that at
n = 2 the quantum Hamiltonian Ĥ and the supercharges Ŝ±

n,0 given by equations (4.8), (4.10)
and (4.11) coincide with the Hamiltonian and supercharges (3.3), (3.4) of the system with
W(x) = (

α − h̄
2

)
x−1 and ν = 0.

The structure of the quantum system (4.8)–(4.11) admits an interesting interpretation. Let
us consider the system of a free planar spinning particle described by the Lagrangian

L = 1

2
ẋ2

i − i

2
ξ̇iξi . (4.12)

Being a free system, it is characterized by the integrals of motion pi,Xi = xi − pit and ξi .
Via the Poisson–Dirac brackets {xi, pj } = δij , {ξi, ξj } = −iδij , i, j = 1, 2, they generate the
space translations, the Galilei boosts and the supertranslations. Any function of pi,Xi and ξi

is also an integral of motion, and, in particular, the even quadratic functions

H = 1

2
p2

i K = 1

2
X2

i D = 1

2
Xipi � = − i

2
εjkξj ξk (4.13)

J = L + � (4.14)

where L = εijXipj are the integrals of motion generating the Lie algebra so(1, 2) ⊕ u(1) ⊕
u(1). Here the two terms u(1) correspond to the spin � and the total angular momentum
J , while the conformal symmetry so(1, 2) is generated by the Hamiltonian H, by the scale
transformations generator D and by the generator of the special conformal transformations K.

The system (4.12) has more bosonic degrees of freedom than the system (4.1), and
bosonic and fermionic degrees of freedom are not coupled in it. One can decrease the
number of variables and couple appropriately the bosonic and fermionic degrees of freedom
by introducing the constraint fixing the orbital motion:

Jn − α = 0 Jn ≡ L + n� (4.15)
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where α is a real constant and n ∈ N. Then the quantities having zero brackets with
the constraint (4.15) are invariant with respect to the gauge transformations generated by it,
and can be identified as observables of the system (4.12) supplemented with the constraint
(4.15). In order to identify all the set of observables, we define the complex variables

X± = 1√
2
(X1 ± iX2) P± = 1√

2
(p1 ± ip2) ξ± = 1√

2
(ξ1 ± iξ2) (4.16)

with nontrivial brackets {X+, P−} = {X−, P+} = 1, {ξ+, ξ−} = −i, and find that in addition to
the even observables

H = P+P− D = 1
2 (X+P− + P+X−) K = X+X− � = ξ+ξ−

and Jn given by equation (4.15) with L = i(X+P– − X+P−), there is a set of odd observables

S+
n,l = 2n/2in−lP n−l

− Xl
−ξ+ S−

n,l = (
S+

n,l

)∗
. (4.17)

This set of even and odd observables forms on the constraint surface the Lie superalgebra
osp(2|2) (n = 1), or the nonlinear superconformal algebra osp(2|2)n (n > 1) given by
equations (4.4)–(4.7). The free planar spinning particle system being reduced classically to
the constraint surface reproduces the system (4.1). Moreover, the application of the Dirac
quantization prescription applied to the system (4.12), (4.15) (first quantize and then reduce),
reproduces correctly all the quantum corrections to the integrals of motion necessary for the
preservation of the nonlinear superconformal symmetry at the quantum level (for details see
[27]).

5. Discussion and outlook

We have seen that the quantization of the nonlinear supersymmetry faces the problem of the
quantum anomaly. For some classes of the superpotentials, it is possible to find corrections to
the integrals of motion which guarantee the preservation of the nonlinear supersymmetry at
the quantum level. However, the origin of such corrections is not clear in a generic case.

The example of system (4.1) shows that the corrections can be understood as appearing due
to the quantum Dirac reduction procedure applied to the appropriately chosen free extended
system supplied with the constraint generating the necessary boson–fermion coupling. It
was also observed in [13] that the nonlinear supersymmetry of non-holomorphic form [14]
related to quasi-exactly solvable systems with sextic potential can be obtained via reduction
of a planar system possessing nonlinear holomorphic supersymmetry. At the same time, it
is known that a broad class of the quasi-exactly solvable systems, to which the systems with
nonlinear supersymmetry are intimately related, can be obtained by the dimensional reduction
of the corresponding extended systems [29]. Note that the same is true with respect to some
integrable systems [30]. The nonlinear symmetries of a non-supersymmetric nature can also
be obtained by the Hamiltonian reduction [1].

Therefore, it would be interesting to investigate the problem of the quantum anomaly
associated with nonlinear supersymmetry within the general framework of reduction. This
could be helpful, in particular, for establishing the nature of the universal quantum correction
(3.5) for the Calogero-like systems with n = 2 supersymmetry. The idea of reduction could
also be useful for clarifying the origin of the Dolan–Grady relations, on which the construction
of the nonlinear holomorphic supersymmetry is based, as well as for its generalization for the
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case of many particle systems. In such a way one could try to answer the intriguing question
on the possibility of realizing the nonlinear supersymmetry at the field level.
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